

1

Using Decision Procedures to

Build Domain-Specific Deductive Synthesis Systems

Jeffrey Van Baalen
Steven Roach
M.S. 269-2

NASA Ames Research Center
Moffet Field, CA

{jvb, sroach}@ptolemy.arc.nasa.gov

1 Introduction

This paper describes a class of decision procedures that we have found useful for efficient, domain-
specific deductive synthesis. These procedures are called

closure-based ground literal satisfiability proce-
dures.

We argue that this is a large and interesting class of procedures and show how to interface these pro-
cedures to a theorem prover for efficient deductive synthesis. Finally, we describe some results we have
observed from our implementation.

Amphion/NAIF [Stickel 94] is a domain-specific, high-assurance software synthesis system. It takes
an abstract specification of a problem in solar system mechanics, such as Òwhen will a signal sent from the
Cassini spacecraft to Earth be blocked by the planet Saturn?Ó, and automatically synthesizes a FORTRAN
program to solve it. Amphion/NAIF uses deductive synthesis in which programs are synthesized as a
byproduct of theorem proving from a domain theory. In this paradigm, problem specifications are of the
form , where and are vectors of variables, and we are only interested in constructive
proofs in which witnesses have been produced for each of the variables in .

 Deductive synthesis has two potential advantages over competing synthesis technologies. The first is
the well-known but unrealized promise that developing a declarative domain theory is more cost-effective
than developing a special-purpose synthesis engine. The second advantage is that since synthesized pro-
grams are correct relative to a domain theory, verification is confined to domain theories. Because declara-
tive domain theories are simpler than programs, they are presumably easier to verify. This is of particular
interest when synthesized code must be high-assurance.

There are several reasons why, despite these potential advantages, the number of deductive synthesis
systems remains small. Perhaps the most serious reason is that systems built using this technology are al-
most always unacceptably inefficient unless the domain theory and theorem prover are carefully tuned. This
tuning process requires a large amount of automated reasoning expertise, and even with this expertise, the
process is iterative and extremely time consuming.

In our attempts to construct an efficient deductive synthesis system for Amphion/NAIF, we initially
considered using Prolog. However, due to the extensive need for equality in the domain theory, Prolog was
inappropriate. So we moved to a more general paradigm employing a refutation-based theorem prover. Con-
structing an efficient implementation in this setting was very time consuming.

In order to assist in constructing efficient implementations, we are developing a tool, Meta-Amphion
[Lowry 97], that takes a domain theory as input and automatically generates an efficient, specialized deduc-
tive synthesis engine such as Amphion/NAIF. The key is a technique that generates efficient decision pro-
cedures for subtheories of the domain theory and then integrates them through an interface to a general-
purpose refutation-based theorem-prover.

A prototype of Meta-Amphion has been constructed [Roach 97]. This prototype has generated domain-
specific deductive synthesis systems that achieve a significant speed improvement over non-optimized, gen-
eral-purpose theorem provers. More importantly, these generated systems perform at least as well as, and
often better than, expertly-tuned theorem provers for particular application domains. Figure 1 is a graph of
the problem size (number of literals) vs. the number of inference steps required to find a proof for an un-
optimized system, a hand tuned system, and a system generated by Meta-Amphion (Tops). Figure 2 com-
pares a hand-tuned system vs. the Meta-Amphion generated system (Tops).

This paper describes the underlying infrastructure used by Meta-Amphion, i.e. the interface and the
properties of the procedures. (We do not discuss the generation of these procedures here.) We have found
that even with hand-generation of these procedures, this infrastructure dramatically reduces the time it takes

 ∀ ∃v v v v
x y P x y[(,)]

v
x

v
y v

y

2

to construct efficient domain-specific synthesis systems by enabling an automated reasoning expert to
quickly identify where decision procedures can be used to improve the performance of the theorem prover.

While much existing research on decision procedures has been either in isolation [N&O 79, Shostak
84, Cyrluk 96] or in the context of interfacing procedures to non-refutation-based theorem provers [PVS 92,
B&M 88], we are unaware of any work done on decision procedures in the context of deductive synthesis
where witnesses must be found. This paper presents a decision procedure interface to a theorem prover with
several inference rules including binary resolution and paramodulation. The collection of extended infer-
ence rules enables satisfiability procedures to be interfaced to the theorem prover in a straightforward and
uniform manner. Combinations of procedures can be plugged in on a theory-by-theory basis, allowing the
theorem prover to be tailored to particular theories.

 Figure 1 Figure 2

Section 2 introduces separated clause notation, the notation used by the separated resolution and para-
modulation rules. The motivation for these rules is that they facilitate the use of decision procedures to re-
place general purpose theorem proving over a subset of a domain. Section 3 describes the decision
procedure interface to the theorem prover. Section 4 describes decision procedures used specifically for de-
ductive synthesis. Section 5 describes the implementation of the interface and the results of using these pro-
cedures for deductive synthesis for Amphion/NAIF.

2 Separated Inference Rules

This section describes our extension to the inference rules in the SNARK [Stickel 94] theorem prover
enabling decision procedures to be interfaced for deductive synthesis. The basic idea is that all clauses are
separated into two parts: a part that is reasoned about by interfaced decision procedures and a part that is
reasoned about by SNARK. First,

separated clause

 form is defined, and then the separated inference rules
are described. SNARK has inference rules resolution, hyperresolution, paramodulation and demodulation.
The overall extension has been accomplished by extending each inference rule in a uniform manner. This
paper only discusses separated binary resolution and separated paramodulation. The other rules are extend-
ed similarly.

Separated binary resolution is similar to resolution with restricted quantifiers or

RQ-resolution

[Burckert91]. Recall that we prove

T

|=

Φ

 by refutation by showing that

T

∪

{Â

Φ

}

is unsatisfiable. Assuming
that

T

 is satisfiable, this amounts to showing that no model of

T

 is a model of

Â

Φ

.

The general idea of our
binary resolution rule (as well as RQ-resolution) is as follows. If there is a method for determining satisfi-
ability of a formula relative to a theory

,

 we prove

T

|=

Φ

 by showing that no model of

T

1

can be
extended to a model of

T

2

∪

{Â

Φ

}

, where

T

2

=T-T

1

 (where a theory is a set of sentences closed under impli-
cation).

The separated rules work with clauses that are

separated relative

to a subtheory, called a

restriction
theory

(also often called a

constraint theory)

. Separated clause form is similar to RQ-clause

form in [Burck-
ert 91].

Definition 2.1 (Separated Clause)

Let

L

 be the language of a theory

T

, a first-order theory with equality.

0

500

1 000

1 500

2 000

2 500

3 000

3 500

4 000

0 5 1 0 15 2 0 2 5
Number of Literals in Specification

In fe rence
Steps

Hand Tuned

Tops

No Tune

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25
Number of Literals in Specification

In fe rence
Steps

Hand Tuned

Tops

No Tune

T T1 ⊆

3

We treat equality as a logical symbol, so = is not in

L.

 Let be the language of . A clause

C

with the following properties is said to be

separated relative to T

1

:
1.

C

 is arranged into

C

1

∨

C

2

, where both

C

1

 and

C

2

 are disjunctions of literals (i.e., clauses).
2. All the function and relation symbols in

C

1

 come from

L

1

 and all the function and relation symbols in

C

2

come from

L-L

1

.
Constant symbols may appear in

C

1

 or

C

2

 regardless of what language they are in. Notice that

C

1

∨

C

2

can be written , where is the negation of

C

1

. Since

C

1

 is a disjunction of literals, is a con-
junction of the negations of the literals in

C

1

. If is a clause separated relative to some the-
ory, is called the

restriction

of

C

 and

C

2

 is called the

matrix

 of

C

. A set of clauses is separated relative
to a theory if each of the clauses in the set is separated relative to the theory.

A clause is separated in two steps. In the first step, literals are placed in the restriction or matrix of a
clause based on their predicate symbol. In the second, each non-constant term

t

whose head symbol is in the
ÒwrongÓ language is replaced by a new variable

x

. Then if

t

 appeared in the matrix,

x=t

is conjoined to the
restriction and if

t

 appeared in the restriction,

x

≠

t

is disjoined to the matrix.

Example 2.1

Suppose we have a theory

T

1

 of

LISP

 list structure whose non-logical symbols are the function
symbols

HEAD

,

TAIL

, and

CONS

. Then the separation of the formula relative to

T

1

 is
.

Separated binary resolution computes a resolvant of two clauses,

CÕ

 and

CÕÕ

, each separated relative to
a theory

T

1

. This resolvant is also a clause separated relative to

T

1

. Informally, a resolvant is computed as
follows. First, ordinary resolution is performed on the matrices (right hand sides) of

 CÕ

 and

CÕÕ

 to form the
matrix of the resolvant. The resulting substitution

σ

 is used in forming the restriction of the resolvant which
is the conjunction of the restrictions of

CÕ

and

CÕÕ

with the substitution

σ

 applied. If the new restriction is
unsatisfiable in

T

1

, the resolvant is

true

 and, as a practical matter for resolution refutation, can be discarded.

Definition 2.2 (Separated Binary Resolution)

 Let

CÕ

 and

CÕÕ

 be variable disjoint clauses separated rela-
tive to a theory

T

1

.

Let and , where

Q

 and

R are (pos-
sibly empty) clauses. If l1 and unify with most general unifier σ and is
satisfiable in T1, the separated resolvant of CÕ and CÕÕ is the separation1 of

.

Example 2.2 In step 8 of example 2.3, the existential closure of the derived restriction
 is satisfiable in the theory of LISP list structure. Therefore, the resolvant is

retained.

Lemma 2.1 (Soundness of separated binary resolution) Let Ψ be a set of separated clauses and let ψ be
a clause derived from two elements of Ψ by separated binary resolution. If M is a model of Ψ, M is a model
of Ψ∪{ψ} .

Proof: Soundness here follows immediately from the soundness of ordinary binary resolution. The sat-
isfiability check on the restriction of the resolvant is not necessary for soundness of the rule overall. Rath-
er, if the restriction of the resolvant is unsatisfiable, the separated clause is a tautology. []

Definition 2.3 (Separated Paramodulation) Let l[t] be a literal with at least one occurrence of the term t.
Let CÕ and CÕÕ be variable disjoint clauses separated relative to a theory T1. Let
and , where Q and R are (possibly empty) clauses. If t and r unify with most

1. The separation of the resolvant does not have to be a separate step. However, it simplifies the presentation.

L L1 ⊆ T T1 ⊆

C C1 2⇒ C1 C1
C C C= ⇒[]1 2

C1

tail L nil() ≠
x tail L x nil= ⇒ ≠() ()

′ = ∧ ∧ ⇒ ∨C l Qnα α1 1... ′′ = ∧ ∧ ⇒ ∨C l Rpβ β1 2...
l2 ∃ ∧ ∧ ∧ ∧ ∧()[]α α β β σ1 1... ...n p

α α β β σ σ1 1∧ ∧ ∧ ∧ ∧() ⇒ ∨()... ...n p Q R

(()) ((,))x tail w y cons u z= ∧ =

′ = ∧ ∧ ⇒ ∨C l t Qnα α1 ... []
′′ = ∧ ∧ ⇒ = ∨C r s Rpβ β1 ... ()

4

general unifier σ and is satisfiable in T1, a separated paramodulant of CÕ
and CÕÕ is the separation of , where lσ[sσ] is the literal
l with the substitution σ applied and one occurrence of tσ replaced with sσ.

As with resolution, soundness of separated paramodulation follows from the soundness of the ordinary
paramodulation rule.

An ordinary refutation of a set of clauses C consists of a sequence of clauses where each clause is an
element of C or is derived from two preceding clauses in the sequence by binary resolution or paramodula-
tion. An ordinary refutation is closed when the empty clause is derived. A separated refutation is a sequence
of separated clauses derived using the separated rules. Unlike an ordinary refutation, a separated refutation
is not necessarily closed when a clause with an empty matrix is derived. Instead, in general, there is a set of
clauses each of which has a separated refutation such that T1|= . A
proof of this fact can be found in [Burckert91] where it is also shown that this disjunction is finite so long
as T1 is first-order (this is a consequence of Compactness). Hence, a closed separated refutation ends with
a collection of separated clauses all of whose matrices are empty such that the existential closure of the dis-
junction of their restrictions is a theorem of T1.

Lemma 2.2 (Soundness of separated refutation) If the separation of a set of clauses C has a closed sepa-
rated refutation, C is unsatisfiable.

Proof: This result follows immediately from soundness of separated binary resolution and separated
parmodulation, and the fact that if a set of separated clauses is unsatisfiable, so is the unseparated clause set.
[]

An inference system with ordinary binary resolution and ordinary paramodulation is complete if re-
flexivity axioms are included. In order for a system including separated versions of these rules to be com-
plete, a number of additional types of axioms must be added such as separated versions of predicate
congruence axioms. In practice, completeness has not been an issue in our work on deductive synthesis, so
we do not discuss it further here.

 [Burckert 91] points out that for some restriction theories, closed separated refutations can always be
obtained by considering the validity of only the restrictions of individual clauses. For instance, it is proven
that if T1 is a definite theory, i.e., a theory that can be written as a set of definite clauses, closed separated
refutations are guaranteed for query clauses whose restrictions contain only positive literals. This paper fo-
cuses on the case where validity of only single restrictions needs to be checked. When this is not the case,
getting a closed separated refutation requires an additional inference rule (such as consensus [Dunham 63])
or it requires decision procedures to be used in a more complicated manner than presented here. Thus far
the simpler case has been sufficient in our work on deductive synthesis.

The definition of a separated clause prohibits the derivation of clauses with empty matrices when terms
that are not in the restriction language appear, i.e., these terms keep getting separated back into the matrix.
In this case, the matrix of a clause will end up containing only literals of the form t≠x for some variable x
and some term t in the language L-L1 not containing x. Such a clause can be viewed as having an empty
matrix with the disequalities considered as substitutions for variables in the restriction. Our system com-
pletes refutations by applying these substitutions to the restriction (rendering the clause no longer separated)
and then checking the validity of the resultant restriction.

Example 2.3. Given the theory (with L a constant symbol):

In this theory, the functions front (which ÒcomputesÓ all but the last of a list) and last (which Òcom-
putesÓ the last element of a list) are constrained in terms of the functions append, cons, and tail. The theorem
proved below can be viewed as a simple deductive synthesis query where we are attempting to derive the
functions front (a witness for y) and last (a witness for z) under the assumption for an input list L, that L≠nil
and tail(L)≠nil. Let T1 be a theory of HEAD, TAIL, CONS and NIL. A refutation that is separated relative to

∃ ∧ ∧ ∧ ∧ ∧()[]α α β β σ1 1... ...n p
α α β β σ σ σ σ σ1 1∧ ∧ ∧ ∧ ∧() ⇒ ∨ ∨... ... []n p l s Q R

C Cn1 ⇒ ⇒{ }[],..., [] ∃ ∨ ∨ ∃C Cn1 ...

x x L nil tail L nil
L nil tail L nil tail L append front tail L cons last tail L nil
append cons u v w cons u append v w
x nil x cons head x tail x

head cons x y x tail cons x y y cons

= ∧ ≠ ∧ ≠
≠ → ≠ → =

=
≠ → =

= ∧ = ∧

()
(() () ((()), ((()),))

((,),) (, (,))
() ((), ())

((,)) ((,)) (xx y nil,) ≠

5

T1 is given below. Clauses 1-5 below are the first three axioms above separated relative to T1. Note that
these are the clauses of T-T1.

Since the existential closure of the restriction of 11 is a theorem of the CONS-HEAD-TAIL theory (regardless
of the interpretation of front and last), the proof is finished.

3 The Decision Procedure Interface
This section describes how decision procedures are interfaced to the theorem prover through the sep-

arated inference rules presented in the previous section. We identify the properties a decision procedure
must have in order for it to be interfaced. We also show that there is a large and interesting class of decision
procedures that meet this requirement.

A decision procedure is interfaced to the theorem prover for proving a theorem Φ in a theory T by iden-
tifying a restriction theory for which the procedure decides satisfiability. The clauses of T-T1 and
ÂΦ are separated relative to T1 and the decision procedure checks the satisfiability of derived restrictions.

An important question is, ÒWhat is the utility of our technique for interfacing decision procedures to a
theorem prover?Ó The answer to this question turns on the following question: ÒHow large is the class of
decision procedures that can be interfaced?Ó To be interfaced, a procedure must decide satisfiability of
clause restrictions. As mentioned, restrictions are conjunctions of literals possibly containing variables. One
class of procedures that appears to be large is the class of ground literal satisfiability procedures. These are
procedures that decide satisfiability of conjunctions of ground literals. It turns out that, even though restric-
tions of first-order clauses have variables in them, it is possible to interface any ground literal satisfiability
procedure. We now establish this fact.

Definition 3.1 (Ground Literal Satisfiability Procedure) A ground literal satisfiability procedure(GLSP)
for a theory T is a procedure that decides whether or not a conjunction of ground literals F is satisfiable in
T. The language of F must be the language of T but may be extended by a collection of uninterpreted func-
tion symbols (including constants).

1 Given

2 Given

3 Given

4 Given

5 Given

6 Negated
conclusion

7 paramodu-
late 5 into 6

8 resolve 2
and 4

9 resolve 3
and 8

10 resolve 9
and 7

11 resolve 10
and 1

⇒ =x x
⇒ ≠L nil

x tail L x nil= ⇒ ≠() ()

x tail L y cons z nil w tail L
x nil L nil z last w x append front x y

= ∧ = ∧ =()
⇒ = ∨ = ∨ ≠ ∨ =()

() (,) ()
() ((),)

((,)) ((,)) (,) (,)x cons u v y cons u z append x w y z append v w= ∧ = ⇒ = ∨ ≠

x cons z nil L append y x1 1 1 1= ⇒ ≠(,) ((,))

((,)) ((,)) ((,))
((,))

x cons u v L cons u z w cons z nil
z append v w

= ∧ = ∧ = ⇒
≠

1

(()) ((,))
() (((),)) (())

x tail L y cons u nil
x nil x append front x y u last x

= ∧ = ⇒
= ∨ = ∨ ≠

(()) ((,))
(((),)) (())

x tail L y cons u nil
x append front x y u last x

1 1 1

1 1 1 1

= ∧ = ⇒
= ∨ ≠

((, ())) ((,)) ((,))
(()) ((,))

(())

x cons u front z L cons u z w cons z nil
z tail L w cons u nil

u last z

= ∧ = ∧ = ∧
= ∧ = ⇒

≠

1

1

1

((, ())) ((,)) ((,))
(()) (((),)) []
x cons u front z L cons u z w cons z nil
z tail L w cons last z nil

= ∧ = ∧ = ∧
= ∧ = ⇒

1

T T1 ⊆

6

Theorem 3.1 (Applicability of GLSPs) If P is a GLSP for a theory T1, P can be used to decide the satisfi-
ability in T1 of the restriction of any clause separated relative to T1.

Proof Sketch: Let be a clause separated relative to T1. Let be the variables in
. Let σ be the substitution , where the ci are new uninterpreted constant sym-

bols. Replace the restriction of C with .
The full proof shows that (a) and are cosatisfiable and (b) the satisfiabil-
ity of C implies the satisfiability of . Hence, we can replace any sep-
arated clause C with the clause and decide the satisfiability of the
restriction of such a clause by deciding the satisfiability of the ground conjunction . []

The fact that any GLSP can be interfaced to the separated inference rules is a fortunate situation be-
cause many GLSPs have been identified [N&O 79][N&O 80] [Cyrluk 96]. In addition, there is reason to
believe that there are many more procedures in this class. For instance, [N&O 80] shows how to extend a
GLSP for the theory of equality with uninterpreted function symbols to a theory of LISP list structure, i.e., a
theory in which the function symbols HEAD, TAIL, CONS and NIL are interpreted. Their procedure can be
interfaced to our system and used to check satisfiability of restrictions in our running example, i.e., the re-
striction of the clause derived in step 9 of Example 2.1

can be checked for satisfiability in the theory of LISP list structure using Nelson & OppenÕs procedure by
considering all the variables to be constants.

We have also constructed several new procedures by extending a GLSP for uninterpreted function
symbols. Also, [Gallier 86, ch 10.6] gives techniques for constructing GLSPs based on congruence closure
for conjunctions of ground literals containing predicates. The essential idea is to introduce boolean con-
stants True and False and to represent P(t1,...,tn) as P(t1,...,tn)=True and ÂP(t1,...,tn) as P(t1,...,tn)=False.
Then, if the congruence closure graph of a conjunction F contains True=False, F is unsatisfiable.

Perhaps more interestingly, both [N&O79] and [Cyrluk 96] describe techniques for combining GLSPs
with disjoint languages into a GLSP for the union of these languages and much work has been done recently
on the closely related topic of combining decision procedures for equational theories [Baader 97].

Hence, we are in the convenient situation of being able to combine GLSPs to create a GLSP for a re-
striction theory. Given a theory T, we can design from components an integrated decision procedure for a
restriction theory. See [Lowry 97] or [Roach 97] for examples of techniques for designing decision proce-
dures from components.

4 Deductive Synthesis Decision Procedures
This section shows that if a GLSP has the additional property of being closure-based it can be used not

only to check satisfiability but also to check for entailment and to produce witnesses for deductive synthesis.
All of the procedures mentioned in Section 3 as well as all of the procedures we have used in our work on
deductive synthesis are closure based.

As discussed in Section 2, producing a closed separated refutation requires that the disjunction of the
restrictions from a set of clauses with empty matrices be checked for entailment. Recall that this paper is
focused on restriction theories in which only single restrictions must be checked for entailment. Hence, au-
tomated separated refutations require decision procedures for computing both satisfiability and entailment
of restrictions.

For the entailment problem, we cannot use the technique of replacing universally quantified variables
in a restriction with uninterpreted constants. Instead, these variables are replaced by existentially quantified
variables. (An argument similar to the proof of lemma 4.1 can be used to justify this.) For the entailment
check, we need decision procedures that are literal entailment procedures.

Definition 4.1 A literal entailment procedure (LEP) for a theory T is a procedure that decides for a conjunc-
tion of literals F in the language of T (possibly containing variables) whether or not T|=∃ F.

While in general the satisfiability procedure and the entailment procedure for a restriction theory are

C C C= ⇒[]1 2 x xn1,...,
C1 x c x cn n1 1← ←{ },...,

x c x c Cn n1 1 1= ∧ ∧ = ∧... σ
x c x c Cn n1 1 1= ∧ ∧ = ∧... σ C1

x c x c C Cn n1 1 1 2= ∧ ∧ = ∧() ⇒... σ
x c x c C Cn n1 1 1 2= ∧ ∧ = ∧() ⇒... σ

C1σ

((, ())) ((,)) ((,))
(()) ((,))
x cons u front z L cons u z w cons z nil
z tail L w cons u nil

= ∧ = ∧ = ∧
= ∧ =

1

1

7

separate procedures, we have found that closure-based GLSPs can also be used as LEPs.
Definition 4.2 (Closure-based satisfiability procedure) A closure-based satisfiability procedure com-
putes satisfiability of a set of formulas Φ by constructing a finite set Ψ of ground consequences of Φ such
that Ψ contains a ground literal and its negation just in case Φ is unsatisfiable.

GLSPs based on congruence closure are examples of closure-based satisfiability procedures. They
construct a congruence graph to check satisfiability of a conjunction of literals. As new literals are added to
a conjunction, new nodes representing terms are added to the graph and/or congruence classes are merged.

We illustrate how a closure-based satisfiability procedure is used as a LEP with Nelson & OppenÕs
HEAD-TAIL-CONS GLSP.

Example 4.1 In step 11 of example 2.3, it must be shown that the existential closure of

is a theorem of the HEAD-TAIL-CONS theory. First, the Nelson & Oppen GLSP is used to check the satisfi-
ability of this conjunction assuming that the variables are uninterpreted constants. In doing so, the proce-
dure computes the following additional equalities. From , we get . Hence,

. From and , we get
. Hence, and . What the proce-

dure has shown is that in every model of T in which F(c1,...,cn) is satisfiable, F(t1,...,tn) is satisfiable. Next,
the procedure is used to check the unsatisfiability of ÂF(t1,...,tn). Since ÂF(t1,...,tn) is a disjunction which
is unsatisfiable just in case all of its disjuncts are, each literal of ÂF(t1,...,tn) can be checked separately. If
ÂF(t1,...,tn) is unsatisfiable, T|=F(t1,...,tn) and T|=∃ F. We have exploited the following fact in this analysis.

Lemma 4.1 Let F(c1,...,cn) be a conjunction of ground literals that is satisfiable in a theory T. Further, sup-
pose that the constant symbols c1,...,cn do not occur in T. If , where each ti
is a term not containing any of the cjs, .

Proof: Suppose . Then, by the deduction theorem,
, Also, since the ci do not appear in T, the first-order law of uni-

versal generalization gives us .[]
Lemma 4.1 gives us license to use a GLSP to find potential witnesses for existentially quantified vari-

ables, i.e., terms that make F true in every model of T in which F is true. The GLSP is then used to check
that these potential witnesses are, in fact, witnesses, i.e., that they make F true in every model of T.

We have used the separated refutation system in the context of deductive synthesis where we are only
interested in constructive proofs in which witnesses have been produced for existentially quantified vari-
ables in a theorem. In this context, decision procedures must produce witnesses. Closure-based GLSP have
an added benefit in deductive synthesis, namely that such a GLSP establishes that the existential closure of
a restriction is a theorem by constructing witnesses. These witnesses can be extracted to produce programs
in deductive synthesis. For example, in proving the theorem in example
2.3, the Nelson & Oppen GLSP produces witnesses for y and z. These are cons(head(L),front(tail(L)) and
last(tail(L)) respectively which are the synthesized programs for front(L) and last(L) under the assumption
that L≠nil and tail(L)≠nil.

Thus far in our deductive synthesis work, all the GLSPs we have developed can be used in this manner.

5 Implementation
We compared the performance of three deductive synthesis systems: an untuned system, a system man-

ually tuned by a program synthesis expert, and a system tuned by using several decision procedures to the
theorem prover. The untuned system describes the state of Amphion/NAIF before the theorem proving ex-
pert tuned that system. This untuned system is exactly the type of system we expect Meta-Amphion will be
given as input.

The domain theory for the hand-tuned system consisted of 330 first-order axioms. In the untuned and
Meta-Amphion tuned systems there were approximately 320 axioms. Many of these axioms are equalities,
some of which are oriented and used as rewrite rules. A series of 27 specifications was used to test these
synthesis systems. These specifications ranged from trivial with only a few literals to fairly complex with

((, ())) ((,)) ((,))
(()) (((),))
x cons u front z L cons u z w cons z nil
z tail L w cons last z nil

= ∧ = ∧ = ∧
= ∧ =

1

L cons u z= (,) u head L= ()
x cons head L front tail L= ((), (())) w cons z nil= (,)1 w cons last z nil= ((),)
head cons z nil head cons last z nil((,)) (((),))1 = z last z1 = () z last tail L1 = (())

 T F c t c tn n∪ = = ∧ ∧ =()| 1 1 L

 T x x F x x x t x tn n n n| ,..., (,...,) ()= ∀ ⇒ = ∧ ∧ =()1 1 1 1 L

 T F c t c tn n∪ = = ∧ ∧ =()| 1 1 L

 T F c c c t c tn n n| (,...,) ()= ⇒ = ∧ ∧ =()1 1 1 L

 T x x F x x x t x tn n n n| ,..., (,...,) ()= ∀ ⇒ = ∧ ∧ =()1 1 1 1 L

∃ =(,)((, (,)))y z L append y cons z nil

8

dozens of literals. Thirteen of the specifications were obtained as solutions to problem specifications given
by domain experts, thus this set is representative of the problems encountered during real world use.

Five procedures were created and used to prove each of the 27 specifications. Each of these procedures
was interfaced to the SNARK resolution theorem prover using the inference rules described in Section 2.
Although the programs generated were not always identical, it was shown that solutions to the same prob-
lem specification were always programs that computed the same values.

In Figure 1, the untuned system showed exponential behavior with respect to the specification size for
the number of inference steps (and the CPU time) required to generate a program. The hand-tuned and
TOPS-generated systems both grew much less rapidly, with the TOPS-generated system growing at about
one third the rate of the hand-tuned system in the number of inference steps required to obtain a proof, as
shown in Figure 2.

REFERENCES

[Baader 97] Baader, F. & Tinelli, C., ÒA New Approach for Combining Decision Procedures for the Word
Problem, and its Connection to the Nelson-Oppen Combination Method,Ó CADE14, pp. 19-33,
1997.

[Boyer and Moore 88] R. Boyer and Moore, J, Integrating Decision Procedures into Heuristic Theorem
Provers: A Case Study of Linear Arithmetic, Institute for Computing Science and Computer Appli-
cations, University of Texas as Austin, 1988.

[Burckert 91] Burckert, H. J., ÒA Resolution Principle for a Logic With Restricted Quantifiers,Ó Lecture
Notes in Artificial Intelligence, Vol. 568, Springer-Verlag, 1991.

[Chang & Lee 73] Chang, C & Lee, R.C., Symbolic Logic and Mechanical Theorem Proving, Academic
Press, New York, 1973.

[Cyrluk 96] Cyrluk, D., Lincoln, P., Shankar, N. ÒOn ShostakÕs decision procedures for combinations of
theories,Ó Automated Deduction--CADE-13 in Lecture Notes in AI 1104, (M. A. McRobbie and J.
K. Slaney Eds), Springer, p463-477, 1996.

[Dunham 63] Dunham, B. and North, J., ÒTheorem Testing by Computer,Ó Proceedings of the Symposium
on Mathematical Theory of Automata, Polytechnic Press, Brooklyn, N. Y., pp. 173-177, 1963.

[Gallier 86] Gallier, J. H., Logic for Computer Science: Foundations of Automatic Theorem Proving, Harper
and Row, 1986.

[Lowry 97] M. Lowry and J. Van Baalen, ÒMETA-Amphion: Synthesis of Efficient Domain-Specific Pro-
gram Synthesis SystemsÓ, Automated Software Engineering, vol 4, pp199-241, 1997.

[N& O 79] Nelson, G., and Oppen, D., ÒSimplification By Cooperating Decision Procedures,Ó ACM
Transactions on Programming Languages and Systems, No. 1, pp245-257, 1979.
[N&O 80] Nelson, G., and Oppen, D., ÒFast decision procedures based on congruence closure,Ó Journal of

the ACM, 27, 2, pp. 356-364, 1980.
[PVS 92] Owre, S., Rushby, M., and Shankar, N., ÒPVS: A Prototype Verification System,Ó CADE-11,

LNAI Vol 607, pp 748-752, 1992.
[Roach 97] Roach, S., ÒTOPS: Theory Operationalization for Program Synthesis,Ó Ph.D. Thesis at Univer-

sity of Wyoming, 1997.
[Shostak 79] Shostak, R., ÒA practical decision procedure for arithmetic with function symbols,Ó Journal

of the ACM, Vol. 26, pp. 351-360, 1979.
[Shostak 84] Shostak, R., ÒDeciding Combinations of Theories,Ó Journal of the ACM, Vol. 31, pp. 1-12,

1984.
[Stickel et al 94] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood, ÒDeductive Com-

position of Astronomical Software from Subroutine Libraries,Ó CADE-12, 1994.

